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Discrete geometric conservation laws (DGCLs) govern the geometric parame-
ters of numerical schemes designed for the solution of unsteady flow problems on
moving grids. A DGCL requires that these geometric parameters, which include
among others grid positions and velocities, be computed so that the corresponding
numerical scheme reproduces exactly a constant solution. Sometimes, this require-
ment affects the intrinsic design of an arbitrary Lagrangian Eulerian (ALE) solution
method. In this paper, we show for sample ALE schemes that satisfying the cor-
responding DGCL is a necessary and sufficient condition for a numerical scheme
to preserve the nonlinear stability of its fixed grid counterpart. We also highlight
the impact of this theoretical result on practical applications of computational fluid
dynamics. (@ 2001 Elsevier Science
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1. INTRODUCTION

In many computational fluid dynamics (CFD) applications, one or many of the bour
aries delimiting the physical domain of the flow move in time. Typical examples incluc
flows in reciprocating engines, airfoil oscillations, wing flutter, fighter tail buffeting, aircrat
maneuvering, gate sliding, and a large class of free-surface flow problems. When mo
boundaries experience large displacements and/or rotations, or when they undergo
deformations, it becomes necessary to solve the flow problem on a moving and poss
deforming grid. Such a grid is often referred to in the literature as a dynamic mesh. T
popular formulations for solving flow problems on dynamic meshes are the closely rela
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670 FARHAT, GEUZAINE, AND GRANDMONT

arbitrary Lagrangian Eulerian (ALE) [2, 3] and dynamic mesh methods [4]. In these a
other approaches, a numerical scheme designed for solving the flow equations on n
ing grids typically incurs the computation of some geometric quantities involving the gr
positions and velocities. A useful guideline for evaluating these quantities as well as tir
integrating fluxes on moving grids is provided by the enforcement of the so-called discr
geometric conservation law (DGCL) [5]. This law states that the computation of the ge
metric parameters must be performed in such a way that, independently of the mesh mo
the resulting numerical scheme preserves the state of a uniform flow.

The idea of computing the discrete mesh velocities and other geometric parameter
to preserve a certain physical quantity goes back to the early days of CFD. The termi
logy “geometric conservation law” was coined in 1979 by Thomas and Lombard [6] wt
derived this concept from the law of mass conservation in a spatial region bounded &
moving surface, and applied it to construct an improved finite difference method for flc
computations on moving grids. This concept was subsequently extended to characte
geometrically conservative schemes as algorithms that preserve the entire state of a
form flow. First-order, time-accurate, and geometrically conservative ALE finite volun
schemes were presented and discussed in [7, 8]. First-order time-accurate and geor
cally conservative ALE finite element schemes were presented in [8]. DGCLs for seco
order time-accurate ALE finite volume schemes have also been developed and discu
in [9].

There has been sufficient numerical evidence showing that satisfying the DGCL impro
considerably the time-accuracy of numerical computations on moving grids [7, 9]. Howev
for some applications, it has also been reported that respecting or violating the DG
produced the same numerical results and delivered the same computational perform
(for example, see [1]). For this reason, and because the theoretical status of the DC(
has remained for a long time unclear, the following questions have been frequently asl
(a) why should one pay special attention to a uniform flow field, and (b) why should
scheme compute exactly this particular solution of the Navier—Stokes equations whe
only approximates the other solutions?

In an attempt to answer the above two questions, Guillard and Farhat have rece
performed a theoretical investigation of the DGCL. More specifically, they have prov:
in [5] that “for a given scheme that is p-order time-accurate on a fixed mesh, satisfyi
the corresponding p-discrete geometric conservation law is a sufficient condition for tl
scheme to be at least first-order time-accurate on a moving rmelgmce, Guillard and
Farhat have established that the requirement of computing exactly a uniform field o
moving grid is closely related to an accuracy condition, or at least a consistency conditi
While this result sheds some light on the theoretical status of the DGCL, it does not fu
explain why it has also been reported that violating the DGCL introduces a weak instabi
in the numerical solution on moving grids of Euler flows (for example, see [3, 8]).

Motivated by the observations reported in [3, 8] about the effect of the DGCL on n
merical stability, Formaggia and Nobile have recently investigated the solution of line
advection—diffusion problems on moving grids by ALE finite element methods [10]. The
have shown that for this linear problesatisfying the corresponding first-order discrete
geometric conservation law is a sufficient condition for the backward Euler implicit scher
to be unconditionally stablerhis new result sheds some light on the relationship betwee
the DGCL and numerical stability, and paves the way for understanding the observati
reported in [3, 8]. However, it does not take into account the nonlinearities that characte



NONLINEAR STABILITY OF ALE SCHEMES 671

Euler flows, and stops short from predicting the behavior of an ALE scheme when it d
not satisfy its corresponding DGCL.

In this paper, we investigate further the theoretical status of the DGCL, and expose
relation tononlinear stability. More specifically, using d-dimensional nonlinear scalar
hyperbolic conservation law (NSCL) as a model problein<2, 3), we prove for sample
arbitrary Lagrangian Eulerian schemes ttiet DGCL requirement corresponds to a ne-
cessary and sufficient condition for a numerical scheme to preserve the nonlinear stab
of its fixed grid counterpartWe also highlight the practical importance of this new resul
on a class of CFD applications.

2. THE ALE MODEL PROBLEM

2.1. Motivation

Inthis paper, we define stability mainly in terms of spurious oscillations and overshoots
that sense, nonlinear stability becomes especially vital at shocks and contact discontinu
which tend to create large spurious oscillations in otherwise stable and monotone soluti

To date, there exists no perfect nonlinear stability condition for analyzing schemes de
loped for the solution of the Euler and Navier—Stokes equations. In [13], the author descri
nine imperfect conditions of nonlinear stability, each with its own strengths and weaknes:
All but one of these conditions are based on requiring that the solution of the discreti:
partial differential equation (PDE) inherits some mathematical property of the solution
the continuous PDE that ensures nonlinear stability in the sense defined above. For al
a few of these conditions, the mathematical property of interest can be established
for NSCLs. For the remaining conditions, the relevant nonlinear mathematical property
NSCLs can also be proved for the characteristic variables of the one-dimensional E
equations. However, none of these nonlinear stability conditions can be mathematic
established for the two- and three-dimensional Euler equations. For this reason, NSCL:
often used as model problems for analyzing the nonlinear stability of numerical scher
developed for the solution of the multidimensional Euler equations.

We also note that historically, the potential usefulness of nonlinear stability conditions
equations that do not share the relevant nonlinear properties of NSCLs was demonst
numerically as early as in Boris and Book [11]. Based on this and other common prac
in CFD, we adopt in this paperagxdimensional § = 2, 3) NSCL as a model problem for
analyzing the nonlinear stability of various CFD schemes.

2.2. ALE Form

Because we are interested in flow computations on moving grids, and more specific:
in investigating the relationship between a DGCL and nonlinear stability, we write o
model problem in ALE form and consider ALE solution schemes.

For this purpose, we first introduce the concept of an instantaneous configurat
Q(x,t) c RY, where the coordinates of a point in space are denotexl BY(Xg)1<p<d
and time is denoted bty and that of a reference configurati@é, 0), where the coordi-
nates of a point in space are denotedby (£5)1<p<q and time is denoted by. Next, we
define a mapping function betweé&nx, t) and (¢, 0) as follows

X=X(E,1); t=1 Q)
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and denote byl its determinant

aX
J=detl — |. 2
© (as> @
From Egs. (1) and (2), it follows that the ALE form of a typical NSCL
au
— 4+ Vx-Fu =0 3)
ot
is given by [2]
3J
Ttu +JIVy-(FW—ww)=0 u=u’ att=0, (4)
3
where
X
oot
u:RY x [0, 00 - R (5)
F = (Fpi<p=d
Fs: R — R.

Equation (4) constitutes ogontinuousmodel problem.

2.3. Semi-discretization

In this work, we consider the case where the NSCL (4) is semi-discretized by an unstr
tured finite volume method. However, we also note that the nonlinear stability analysis
present in this paper can be equally performed when the NSCL (4) is semi-discretized |
finite difference or a finite element method. For example, in three dimensions, we asst
thatQ(x, t) is discretized with tetrahedra, and that a dual mesh is constructed with cont
volumes or cells defined at each vertex as the union of the subtetrahedra resulting fron
subdivision by means of the medians of each tetrahedron connected to that vertex.

The semi-discretization of Eq. (4) by a finite volume method can be summarized
follows. Integrating Eq. (4) over a reference c@JI(0) in the& space leads to

E/ uld d§25+/ Vx - (F(u) —wu) J dQ¢ =0, (6)
dt Ja o )

which, in view of Egs. (1) and (2), can be transformed into

d

—/ ude—i—/ Vi - (F(U) —wu)dQy = 0. @)
dt Joo 0

Integrating by part the second term in the above equation gives

d

—/ udszx+/ (F(U) — wu) - i (t) ds = O, (8)
dt Joo 2% t)

whereu; (t) denotes the unitary normal to the cell boundasy; (t).
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Let V(i) denote the set of vertices connected to veiteand for eachj € V (i), let
0% () = 02 (t) N 9K (1). The second term in Eq. (8) can be evaluated on an interfac
by-interface basis as

/(m( (F(w) —wu) - pi(t)ds= Z/d (F(u) —wu) - wij (t) ds, )
92 ()

jevi) /9% M

where;j (t) is the unitary normal t@<2;j (t). Typically, each term in the above sum is ap-
proximated by a numerical flux functiegh—for example, using an (approximate) Riemann
solver [12]—in the following manner:

/m__(t)(F(U) — wu) - pij () ds~ [a€; ()] P(uj, uj, vij (), kij (D). (10)

Here and throughout this papér,| denotes the measure of the geometric quarntjtyy;
denotes thepace-averagealue ofu in the cell; (t), andy;; (t) andx;j (t) are defined by

e / (Hds (11)
Vi (1) = .
1 o 01 Jagy 0"
and
() 1 / (t) (t)ds. (12)
Kii = w(l) - Wij
! 102 O] Jag, !
Finally, substituting Eq. (10) into Eq. (8) gives

d
Sl udacr S ey 010w Uy . ©) =0 (19)
t Qi (t) jevi)

which completes the description of the semi-discretization of the NSCL (4) by a fini
volume method. In general, the numerical flux functibiis required to be conservative

®WU, v, v, k) =—DP(U, v, —V, k) (14)
and consistent with the flux function
®U,u,v,k)=F@U)-v—«u. (15)

In summary, Eq. (13) constitutes asgmi-discretenodel problem. Before discussing its
time-discretization, we specify next our choice of nonlinear stability condition.

3. CONTINUOUS AND DISCRETE MAXIMUM PRINCIPLES

Among the nine nonlinear stability conditions discussed in [13], the upwind range cc
dition is the strongest. This condition is the easiest to prove and enforce, except pos:s
at sonic points. It can be interpreted as a local version of the following theorem due
Kruzkhov [14], which is more general than the upwind range condition in the sense the
applies ind spatial dimensions.
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THEOREM3.1 ([14]). For every measurable and bounded functidrinuR, there exists
one and only one entropic solution of the equation

d

— — W, X)=0 xeR", 0<t<T
at+ﬂ§=:laxﬁ( ) © =

16
ux,0) = u°(x) x e R (16)

in L®(RY x [0, T[) N C([0, T[; LL (RY)) and this solution verifies the maximum principle

loc
0
IUll Lo e xjo, 7p) = ITU” Il Loo(re- (17)

The above theorem states that the solution of a NSCH-@fimensions satisfies the
maximum principle, and therefore is stable in the sense defined in this paper. Theref
we construct a nonlinear stability condition for numerical schemes by requiring that t
solutionu of the semi-discretized NSCL (13) inherits a similar mathematical property-
that is, satisfies a similar discrete maximum principle that can be stated as

vl [3(m>0,M >0 :m<ul <MVi
A (18)

vn>1 m=<u' < MVi,

wheren is an integer that designates a time statfbim the temporal domain.

4. TIME-DISCRETIZATION AND DGCLS

4.1. Evaluation of the Flux Function on a Moving Grid

The time integration betweefi andt"*! of the semi-discrete equations (13) raises the
issue of where to evaluate the numerical flux functibnon the mesh configuration at
(x",t") characterized by]} and«{j, or on that at X", t"1), or in between these two
configurations, or outside these two configurations, or using a combination of all the
mesh configurations?

Two approaches have been proposed to address the above issue. In both of the
sequence of carefully chosen mesh configurations is first identified and evaluated. In
first approach (for example, see [7, 9]), these mesh configurations are used to evaluate
time-averagealuesyj andkij of v (t) andki;j (), then a single numerical flux functichis
computed using;j andx;; . In the second approach, a numerical flux function is evaluated c
each identified mesh configuration, thérns computed as the time average of these fluxe
(for example, see [3, 8]). In general, the two methodologies lead to different numeris
schemes because, for example in the case of a finite volume semi-discretigaimi,
nonlinear function ofy; (t) andx;; (t). In both methodologies, the averaging coefficients ar
obtained by requiring that the resulting numerical scheme satisfies its corresponding DG
For finite volume methods, the two approaches result in the same averaging coeffici
and deliver comparable accuracies; however, the first one is more computationally effic
[9]. For finite element methods, only the second approach has been investigated so fai

In this work, we have chosen to semi-discretize our ALE model problem by a fini
volume method. Therefore, in view of the above discussion, we consider here the f
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approach outlined above for time-integrating the numerical flux function on a moving gr
However, we note that the main result as well as the proofs presented in this paper also
when the numerical flux function is time integrated on a moving grid by averaging a sef
flux functions evaluated on a set of carefully chosen mesh configurations.

4.2. Time Integration

Itis important to note that there is no DG@kr se a DGCL is associated with a specific
numerical procedure [5]. Therefore, investigating the relationship between the DGCL ¢
nonlinear stability calls not only for specifying the semi-discretization method as done
far, but also for the time-integrator.

In order to address both first- and second-order explicit as well as implicit schemes,
choose here to time integrate the semi-discrete model problem (13pkscheme. As
outlined in Section 4.1, we take into account the effect of moving grids by replacing
Eq. (13)[92ij ()], vij (t), andkij () by their respective average valués2i; |, vij, andxi; .
This leads to the followingliscretemodel problem

QM uMt = QP |uf — At > (9% 1@ (UMt ul v, k)
jev)
—At@—0) > (3% [ (ul, uf, vy, iqj). (19)
jev)

whered € [0, 1], and for simplicity, a constant time steyi is assumed. Note that fér= 0
(6 = 1), one recovers a formulation of the first-order forward (backward) Euler explic
(implicit) scheme on moving grids; fér = % one recovers a formulation on moving grids
of a second-order time-accurate implicit scheme.

As stated in the introduction and in Section 4.1, enforcing the DGCL provides a guidel
for designing the sought-after averaging rule, and therefore for determining the value
|8L2; |, vij, andxi; . This procedure is discussed next.

4.3. DGCL Based Averaging Rule

Consider first the continuous model problem (4). When this problem admits a const
solutionu = u* # 0, Eq. (8) becomes

d

— dQy — / w- ui(t)ds=0, (20)
dt Jo, i )

which, in view of Eq. (12), can also be written as

g+l

|szin+1|_|gzi”|=/ (/ w-,ui(t)ds)dt=
tn 89 (1)

Equation (21) is known as the continuous geometric conservation law (GCL) becaus
states a conservation property between geometric quantities.

g+l

> / 1094j (D)l () dt. (21)

jeviy /t"
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Next, consider the discrete model problem (19). For this system to be able to reprod
exactly the constant solutian= u*, it must satisfy

QM |ut — [ QP|ut + At > (3% [ (UF, u*, v, k)
jevi
+ALL—0) >[99 |t U, bij, kij) = 0. (22)
jev

From the consistency condition (15), it follows that

which simplifies Eq. (22) to

F(u*) — _ — _
Q] = |@l| = A= Y 19 Iy + AL Y (9 1K) (24)
jevi jevi)
However,
Z |9%2ij [vij =0 (25)
jevi)

because the cellQ;(t) are required to remain closed during the mesh motion. Henc
Eqg. (24) simplifies to

| — || = At > 139 Ik (26)
jev

which is the DGCL associated with the numerical scheme (19). Note however that t
DGCL is independent af. Because the above DGCL (26) resembles the continuous GC
(21), these two geometric conservation laws are unfortunately confused sometimes, ar
a consequence the DGCL (26) is sometimes erroneously applied to any ALE scheme.

In summary, the discrete system (19) can preserve the constant solutior if it satis-
fies its DGCL (26). This in turn depends on the averaging procedure chosen for compu
10%; |, «ij, andvij. Hence, this averaging procedure is a critical component of an AL
scheme of the form given in (19).

An averaging scheme that respects the DGCL (26) can be designed by exploiting
following observation. The DGCL (26) is the discrete counterpart of the GCL (21), at
its left-hand side is identical to the left-hand side of the GCL (21). In other words, tt
numerical scheme (19) computes exactly the left-hand side of the continuous GCL. Hel
this scheme can be forced to satisfy its DGCL (26) by requiring that it also computes exa
the right-hand side of the continuous GCL—that is,

tl’H»l

NS RIS =/tn (/m‘mw~ui(t)ds) dt. (27)

jev)

In [8, 5], it was shown that if the mesh velocities are constructed to vary linearly inside ee
face and remain constant in time withtfi [t"*!]—which implies a certain parameterization
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of pi (t) andpij (t)—the integralfttnm1 ( fmi «© W - 4i (1) ds) dt can be computed exactly, and
Eq. (26) can be satisfied by computifag2;; |, «ij, andv;; as

L 1 tl‘l+1
9% | = — H/ (/ u--(t)ds)dt
At e 19

kij = k(CGj) (29)

(28)

2

tn+l

_ 1
P — i (t)yds|dt, 30
g |aszij|At/ﬁw (/mija)“”() ) (30)

wherex denotes the normal component of the mesh velogityandcg; the center of
gravity of the face containing the interfag;; .

Again, the DGCL requirement provides one guideline among others for computing 1
average valueQ;jj |, «ij, andvjj, and therefore completing the specification of an ALE
scheme designed for the solution of hyperbolic problems on moving grids. What dist
guishes this guideline from others are the following mathematical results. In [5], it w
shown that for a given scheme thatgsorder time-accurate on a fixed mesh, this require
ment is a sufficient condition for this scheme to be at least first-order time-accurate ¢
moving mesh. In the companion paper [15], it is proved that for multidimensional Eul
problems, the extension to moving grids of the classical second-order time-accurate tt
point backward difference scheme that was designed in [9] to satisfy its DGCL requirem
is also second-order time-accurate on moving grids. Next, we prove that for the NS
model problem, the DGCL requirement is a necessary and sufficient condition for a nut
rical scheme constructed on a moving grid to preserve the nonlinear stability in the se
of the discrete maximum principle (18) of its fixed grid counterpart.

5. NONLINEAR STABILITY ANALYSIS

The ALE scheme (19) is an extension to moving grids of the following fixecdlgscheme

At
urtt = uf - ﬁQ > 1@ (Ul Ut vy)
jev
At -
- m(1—9) > 1910 (uf, uf, viy). (31)
! jevi

Since our main objective is to investigate the effect of the DGCL on the nonlinear stabil
of an ALE scheme such as (19), we consider here the case where the underlying algor
(31) is stable in the nonlinear sense on fixed grids. To this effect, we assume for example
the numerical flux function ismonotoneand that it satisfies when required an appropriats
CFL condition. We also assume that during the entire mesh motion, the mesh remains v
that is,

Q' >0 vn. (32)
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5.1. First-Order Explicit Time Integration

First, we consider the cage= 0 for which one obtains the explicit forward Euler ALE
scheme

QM uft = QP ul — At >[99 1D (uf, uf, vy, ;). (33)
jev

Given the identity (25), the above scheme can also be written as

QM UMt = QP |u — At Y (8% (Ul Ul b k) + A > [a% g - F(u)

jev jev)
= |Qi”|ui“—At Z |@ij|(d>(ui”,u?,17ij,/?i,—)—F(ui”)-\Ti,-), (34)
jev

and in view of the consistency equation (15), it can be transformed into
| urtt = | |ul + At ( > la% |fa;>u{‘
jev

— At Y (09 (@ (u uf. vy &) — @ (ul ufl vijL k). (35)
v

Letc;j be defined as follows:

At \B%JJ o (up,ul,vij, K”n) <I>n(u Ui L))
Gj = | ut = uj _ (36)
0 if u'—u

For a monotone flux functior;; satisfies [12]

We also assume that
d g1 (38)
jev)

which corresponds to a CFL condition required for the stability on a fixed grid of the ba:
scheme (31) witl® = O.

Multiplying and dividing the numerical flux function by — uf and dividing Eg. (35)
by |szi”+1| leads after some algebraic manipulations to

pie (i 5 o s 3

jev jev)

Q| — |t At
+ (‘ I}Q.”LL’I | ’Qnﬂ‘ Z EIe |K,,> (39)
|

jev)
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THEOREMS5.1. Under assumption&37) and (38), satisfying the DGCL(26) is a nec-
essary and sufficient condition for the ALE schef®® to be nonlinearly stable in the
sense defined by the discrete maximum prinaip8. Furthermore if the consistent ALE
schem&39) violates its corresponding DGClhere exists a constant C such that

T
0 CAtT
[UMloo < U7l € YN<N=—.

At
Proof. Let
@ -] At
Q" = |9 licij - (40)
i ’QinH’ ’Qn+1| lgg) i1
We note that
DGCL (26) < g" = 0. (41)

Using the above notation, Eq. (39) becomes

= (1— > ci,->ui“+gi“ui”+ > g, (42)

jeVi() jeVv(i)
which, in view of (37, 38), implies

g'ul + min(ui“, mln)u ) <uMt < max(ui”, max uj) +g'ul. (43)

Now, suppose that
Vi, m<u'<M. (44)
From the inequalities (43) and (44), it follows that
Vi, gluf+m=ut < Mg, (45)

which shows that if the DGCL (26) is satisfied, the discrete maximum principle is al:
satisfied

m<u™! <M, (46)

and therefore the numerical scheme (39) is nonlinearly stable. This completes the proof
the DGCL (26) is a sufficient condition for the ALE scheme (39) to be stable.

It remains to prove that the DGCL (26) is a necessary condition for the ALE scheme (
to be nonlinearly stable in the sense of the discrete maximum principle (18). For t
purpose, suppose that (39) satisfies the discrete maximum principle (18)—and therefo
nonlinearly stable—and consider the initial conditidgh= u*, whereu* is some constant
field. Inthatcasey* < u‘j) < u*Vj.From(18),itfollowsthayn > 1,u* < uf <u*Vj.This
implies thatvn > 1, uf = u*¥j, which means that the numerical scheme (39) preserve
the constant solution = u*. Hence, this scheme satisfies the DGCL (26), which complete
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the proof that the DGCL (26) is a necessary condition for the ALE scheme (39) to be sta
in the sense of the discrete maximum principle.

Next, we derive an upper bound of the growth in time of the solution of the discre
system (39). First, we note that Eq. (40) can be written as

At 1 In+1 - _

jevi

For any consistent ALE scheme—that s, a scheme that is at least first-order time-accura
the following result holds:

g+t

1 _— —
At e (/mi(t)w'ﬂi(t)ds>dt+ Z [0Qij [kij; = O(AL). (48)

jeVv)

From Egs. (47) and (48), it follows that there exists a constamthich in general depends
onw, such that

Vi, |gf| < cCaAt?. (49)
From Egs. (43) and (49), it also follows that
1™ oo = 107 (14 max|gf]) < W2+ CAL) (50)
and therefore

U™ oo < U)o (1 + CAEHM, (51)

which finally implies

T
IuMloo < 1U0lloc€“™T VN <N =—, (52)
At
whereT is the upper limit of the time interval [OT] of interest. Note that the stability
estimate (52) is not as sharp as the stability estimate (51), but has a more conver
expression. m

If the DGCL (26) is satisfiedy = 0Vi, which impliesC = 0, and therefore
U o < N1U°loo- (53)

The above stability result, which is similar to that proved in [10] for linear problem:
shows that an ALE scheme that satisfies its DGCL is nonlinearly stable independel
of the mesh velocityw. This result is of practical interest to many applications such a
fluid/structure interaction problems wheueis not specifieda priori, but rather driven

by an external medium such as a structure. On the other hand, if the DGCL (26) is
satisfied, the behavior of the ALE scheme (19) as far as stability is concerned depe
on the velocity of the moving grid, because the constardepends onw. Again, the

velocity of the dynamic fluid mesh is often dictated by an external agent to the fluid. F
this reason, violating the DGCL can restrict significantly the computational time step a
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therefore can hamper computational efficiency. Nevertheless, for a smooth mesh mo
if At — 0thene®?T — 1 and numerical stability is recovered. While such a strategy |
not computationally efficient, it explains why for sufficiently small time steps, an explic
ALE scheme that violates its DGCL can still behave as well as an explicit ALE scheme' t
satisfies its DGCL.

5.2. First-Order Implicit Time Integration

Next, we consider the cage= 1, which leads to the implicit backward Euler ALE
scheme

|Qin+l| Uin+1 = |Q:q| Uin — At Z |87§2ij |<I>(Uin+l, U'J-H_l, 17”‘ , I?”) . (54)
jev)

In this case, we defing; by

At \39,] | @(U'Hl lJn+1 17” Kl]) KIJ(U'Hl lJn+1 17” Kl])
Qn n+1 n+1
CIJ = | | Y UJ (55)

0 ifuft=ujtt

and note that for a monotone flux functiar, satisfies [12]
cj > 0. (56)
Following the same approach as in the explicit case, we transform (54) into

<1+ Z C|> n+1 Z ci,-uT“

jeVii) jeVvi)

Q| — ot
=ui”+<|'|‘9_|n| | e Z|aQ”|K”> , (57)

JeV(l)

THEOREM5.2. Under assumptiofi56), satisfying the DGCL(26) is a hecessary and
sufficient condition for the ALE schen&7) to be nonlinearly stable in the sense definec
by the discrete maximum princip{&8). Furthermorg if the consistent ALE schenig7)
violates its corresponding DGClthere exists a constant C such that for a sufficiently smal
time stepAt

caAtT T
UMl < U%|v€icaZ VN<N=—.
lUloo < IU” 0o < Al
Proof. Here, we defingj’ n+1py
‘Qn‘ _ |Qn+1‘
Joif

n+1 _

9

Z |39|] |K|] (58)

IGV(I)

We remind the reader that for any consistent ALE scheme, there exists a cahsiact
that

vi, |gMt <cat? (59)
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and note again that
DGCL (26) & g"* =

Using the above notation, Eq. (57) becomes

(” 2 w) M= Y auftt =l g

jev) jev)

(60)

(61)

Suppose that the ALE scheme (57) satisfies its DGCL (26). Then, Eq. (61) simplifies

<1+ Z ci,-)ui”“— Z ciju?+1=u{‘.

jeVi) jeVi)

(62)

Leti, andiy denote the vertices atwhich n.fliuf‘+1 and maxuir1+1 are reached, respectively,

n+1 n+1 n+1
U Ui,

n+1

= mmu = maxu

From Eq. (62), it follows that

<1+ Z Clmj> n+1 Z Gju T+1

jeVv) jeVv)
n+1 n+1
<1+ Z C'MJ) z Ciyju |M’
jeVvi) jev)

which, in view of (56) and Eq. (63), implies

<l+ Z Cimj> minul™* ( Z G, >m|nu”+l+miinui”

jeVv() jev)

<1+ > c,M,> maxuf*! < ( > C.MJ> maxuf'*! + maxu;.

jev) jev)
The above inequalities simplify to

n+1

m|nu > minu]
|

maxul* < maxu,
1 I

(63)

(64)

(65)

(66)

which shows that if the DGCL (26) is satisfied, the discrete maximum principle is al:
satisfied and therefore the numerical scheme (57) is stable. This completes the proof
the DGCL (26) is a sufficient condition for the ALE scheme (57) to be nonlinearly stable

The proof that the DGCL (26) is a necessary condition for the ALE scheme (57) to
stable in the sense of the discrete maximum principle is identical to that establishec

Section 5.1 for the case= 0.
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Letig denote the vertex at whidhu™!| ., is reached

Ul = U™ . (67)
If the ALE scheme (54) violates its corresponding DGCL (26), from Egs. (61) and (67)
follows that

<1+ > cio,»>||u““||oo < ( > qoj>||u”“||oo+nu“||m+\g{;“! U™ o, (68)

jevi) jev)
which, in view of (59), implies

(1= CA) U™ oo < UM oo (69)
For a time stepAt sufficiently small to have & CAt? > 0, the above inequality is mean-
ingful and results in the following estimate:

CAtT T
[UMloo < U0l oTcaZ VN < N = e (70)

Once again, if the DGCL (26) is not satisfied, the stability of the ALE scheme (19) b
comes dependent on the velocity of the moving grid viacgi the con&takbr a smooth
mesh motion and a sufficiently small time stept — 0), ei-ca?2 — 1 and nonlinear sta-
bility is recovered. This explains why for sufficiently small time steps, an implicit ALE
scheme can exhibit the same stability behavior whether or not it satisfies its correspon
DGCL. However, given that a tiny computational time step is never desirable for an impli
scheme, the above result (70) underscores the importance of satisfying the adequate D

5.3. Second-Order Implicit Time Integration

In this section, rather than focusing solely on the @Hse% for which the implicit time
integrator (19) is formally second-order time-accurate (at least on fixed grids), we consi
the more general case whéere 0, 1[. We define the two quantities,

0 | (D(ulk’ ul;;ij - Kij )7¢(u|k’ “.k» Vij - Kij )

At

ok = %] uf - uf (71)
0 ifuf =uk
and
Q] =0]QN| + (1—0)|Q"| (72)

and note that for a monotone flux functicn{j, satisfies [12]

> 0. (73)
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We also assume that
1-0) ) o<1, (74)
jevi)
which corresponds to a CFL condition required for the stability on a fixed grid of the bas
scheme (31).

THEOREM 5.3. Under assumptioné73) and (74), satisfying the DGCL(26) is a ne-
cessary and sufficient condition for the ALE sche&@® with 6 €]0, 1] to be nonlinearly
stable in the sense defined by the discrete maximum prindigje

Proof. Suppose that the ALE scheme (19) satisfies its DGCL (26). Then, after simil
manipulations to those performed in the cases0 andd = 1, the discrete model problem
(19) can be transformed into

<1+9 Z Cn+l> n+l —0 Z Cn-&-l n+1

jeVv) jev)

< -(1-0) > c”>u +(@1-06) > ciul. (75)

jeva) jevi
Let v be defined as follows:
v,”:(l—(l—@) Zc{}) +@-0) > ciul. (76)
jev() jev()

From the inequalities (73) and (74), it follows thgtis a convex linear combination of
anduf, j € V(). Hence, ifu} verifies

Vi, m<u' <M, 77)
thenv!" also satisfies
Vi, m<ou'<M. (78)
Next, observe that the discrete system (75) can be written as

<1+9 Z Cn+1> n+1 _9 Z Cn+1 n+1 .n (79)

jeVvi) jeVv)

which is similar to Eq. (62). From (73), (77), (78), and (79) above, it follows that

minu™! > minv" > m
1 I (80)
maxun+1 < maxv! < M.
1

Hence, if the DGCL (26) is satisfied, the discrete maximum principle is also satisfie
and therefore the ALE scheme (19) witte ]0, 1] is nonlinearly stable. In other words, the
DGCL (26) is a sufficient condition for the ALE scheme (19) to be nonlinearly stable.
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Finally, we note again that the proof that the DGCL (26) is a necessary condition for
ALE scheme (19) to be stable in the sense of the discrete maximum principle is ident
to that established in Section 5.1 for the case 0. =

6. APPLICATIONS

Here, we illustrate the theoretical result presented in this paper with two academic f
problems, and highlight its impact on practical CFD computations with a real-life aeroelas
application. In all three cases, the fluid is air, which is assumed to be a perfect gas. We
assume that the flow is inviscid, and therefore model it by the three-dimensional Et
equations. The ALE conservative form of these equations is given by

99 +JIVx - (FU) —wU) =0, (81)
at e
whereU is the fluid state vectof: denotes here the convective fluxes, and the remainin
variables have the same meaning as previously.

We semi-discretize the above partial differential equation by a second-order spe
accurate finite volume method based on Roe’s flux scheme [16]. We achieve second-c
spatial accuracy via a piecewise linear interpolation method that follows the principle of:
MUSCL (monotonic upwind scheme for conservative laws) procedure [17]. We consic
six different implicit time-integration schemes, two of which satisfy their correspondir
DGClLs. Before specifying these algorithms, we make the following observations that h
introduce a specific notation.

As stated in Section 4.1, the complete description of an ALE scheme such as (19) desi
for CFD computations on moving grids requires the specification of the time-averaging
cedure employed for computing<ij|, vij, andx; . In this work, this averaging procedure
can be described as follows (see also [9]). First, a series of mesh configurations denote
x™ are identified and evaluated. Then, the nonunitary normﬁﬁ?wésociated with these
mesh configurations are computed. Finaily, is obtained by averaging the variou$™
using a specific set of algorithm-dependent weightsis computed asi; = ¥ij /I 9ij II2
and|9<; | is set to]a<2; | = || Tij [|2- Let

At" = tn+l —tn Atnfl =t" — tnfl T = At"
’ ’ Atnh-1
1427 1 72
Ani1 = , an=-1—1, ap_1= ,
n+1 1 + T n n-1 1 + T

and letx;; denote here the center of gravity ofeeof the interfaced ;. The six implicit
time-integration schemes we consider in this section can be summarized as follows.

Scheme A. first-order time-discretization, satisfies its DGCL [8]

QM UM = QUM - A>T a9 |0 (UM UM D k) ) (82a)
jevi)

1 1 1 1
X(l) I <1+ _) Xﬂ 4= (1_ _) Xn+1
2\"" /3 2\ /3

1 1 1 1
R (1_ ¢§> - <1+ ﬁ> X (82b)
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2
_ 10— w, @
Kij = 2( At . (Vij + Vij )

Scheme B. first-order time-discretization, violates its DGCL [8]

_ 1
- (vi(jl) + vi(jZ))

=
Il

|Q=’1+l| Uin+1 — ’QP’UIH _ Atn Z |m” |(D(Uin+l, anJrl’ 17” , K_IJ)
jev)

Scheme C. first-order time-discretization, violates its DGCL [8]

‘Q{H‘l‘ Uin+1 — ’QP’UII’] _ Atn Z |879|] |®(Uin+l, an+l’ 17” , K_IJ)

jevi)
X(l) — Xn+1
— 1
Uij = vl(j)

Kij

n+1 n
iTX )
AtN 1]

Scheme D. second-order time-discretization, satisfies its DGCL [9]

an+l ‘QirH—l’ Uin+1 — _an‘Qin‘Uin _ Otn_l ‘9{1—1’ Uin—l
— A" Z |879IJ ICID(Uin+1v Uer’l, ‘7” , K_Ij)
jeva)

1 1 1 1
x® = —(1+—) x”‘l—i——(l— —) x"
AGINE AGNE

1 1 1 1
x? = <1— ) x“1+(1+) X"
2 /3 2 Ne

oo e )
<@ _ ;<1_ jé) 4 ;(1+ 13) Ll
b= _a;l (Vi(jl) n 1)i(jz)) n otnz+1 vi(js) +vi(j4))
G =% (Qt) (o +vif)

anst (X=X @, @
n ij ij
+ 2 T . (vij + Vij )

(83a)

(83b)

(84a)

(84b)

(85a)

(85h)
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Scheme E. second-order time-discretization, violates its DGCL [9]

an+1 |Q:'H-1| Uin+1 — _an|Qin|Uin _ anfl |Q:']—l‘ Uin—l
— A" a0 (UM UM b k) (86a)
jevi)
x® = x"
v = v (86b)

1
n+1 n
oo (TN o
= AtD [

Scheme F. second-order time-discretization, violates its DGCL [9]

an+l |Qin+l| Uin+1 — _an|Qin|Uin _ O[n—l |Qin—1| Uin—l
— At >0 @ (UM UM b ij) (872)
jev
1 1 1 1
xP = (1-|— > x" + <1— > X"
2 V3 2 V3
1 1 1 1
x® = _(1_ _) X"+ -<1+ —) X+
2 V3 2 V3 (87b)
1 )
vij = é(vi(jl) + vi(j ))

_ 1T =X o, @
K'ij = E( A . (Uij +vij )

Scheme A, Scheme B, and Scheme C, which employ a first-order discretization in tir
correspond to the ALE scheme (19) with= 1. Scheme D, Scheme E, and Scheme F, whic
employ a second-order time-discretization, are based on the classical three-point back
difference scheme rather than on (19) with- % because the former scheme provides the
numerical dissipation that is needed in practical computations, whereas the latter sch
is not dissipative.

Scheme B and Scheme C, which are tempting schemes, violate their respective DG
by computing the fluxes on a single mesh configuration rather than the required avel
configuration. Scheme B uses for that purpose the mesh attiméhile Scheme C uses
for that purpose the mesh configuratidht. Scheme E, which is also a tempting scheme
violates its DGCL not only by computing the fluxes on the single mesh configuratic
x", but also by evaluating the normal component of the mesh velocity simpty; as
((x{}+l — X{})/At") - v} On the other hand, Scheme F, which is based on a three-po
second-order time-discretization, violates its DGCL by computing the fluxes and evaluat
the normal component of the mesh velocity according to the DGCL associated with
two-point second-order time-discretization (19). As stated in Section 4.3, such a sche
is sometimes constructed when the similarity between the GCL (21) and DGCL (26)
confused to erroneously conclude that an ALE scheme should be designed to satisf
continuous GCL.
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6.1. Uniform Flow

First, we consider the case of a one-dimensional uniformtflow U* at a Mach number
My = 0.2 inside a rigid tube of length = 20 m and a 1 nx 1 m square cross section. We
discretize the computational domain into 200 equally spaced points in the direatfahe
flow, and 10 equally spaced points in each of hend z-directions. We construct a first
mesh by connecting these points with tetrahedra, then generate a second mesh by pertt
randomly the positions of the grid points of the first mesh, without however creating a
crossover. LetAx® denote this initial perturbation. Then, we “vibrate” the second mes
according to

AX(t) = AX°sin(500rt) (88)

and compute the time history of the flow using all six schemes outlined above and
vibrating mesh. For each scheme, we compute the relative error

ny _ )%
RelEmt") = Wah — Ul (89)
U=l

and report these errors in Fig. 1 for various values of the computational timestep

The reader can observe that both Scheme A and Scheme D, which satisfy their respe
DGCLs, predict exactly the uniform flow. On the other hand, the remaining schemes, wh
violate their respective DGCLs, exhibit a nonlinear instability that manifests itself in tf
form of spurious oscillations around the exact solution. The magnitude of these oscillati
increases with the computational time step. All these computational results are in per
agreement with the main theoretical result presented in this paper—that is, satisfying
corresponding DGCL is a necessary and sufficient condition for an ALE scheme to prese
the nonlinear stability in the sense of the discrete maximum principle of its fixed gr
counterpart.

Furthermore, the reader can also observe that the exposed oscillations are more impc
in the cases of Scheme E and Scheme F, which employ a second-order time-discretiza
than in that of either Scheme B or Scheme C, which employ a first-order time-discretizati
This is an agreement with the conjecture stated in [5] that the higher-order is an ALE sche
on fixed grids, the more important it becomes that it satisfies its DGCL on moving grids

6.2. Shock Tube

Next, we consider the same tube and flow discretization as in Section 6.1, but initial
the one-dimensional flow with Sod’s conditions [18]

—5 =X <04 p=10° N/’
Ux:Uy:Uz:O

-

. p = 0.125 kg/n?
OSXSE p = 10" N/m?
vx=vy=vz=0
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FIG. 1. Uniform flow problem.

and vibrate the mesh according to
AX(t) = Ax®sin(4000rt). (90)

We solve this shock tube problem by all six schemes specified above using the same ¢
putational time step\t = 0.05 ms. This value ofAt corresponds to CFE 4, which is a
reasonable compromise between the fact that the shock tube problem is a wave propag
problem and all six schemes employ an implicit time integrator. For each scheme, we re
in Fig. 2 the predicted distribution of the density alongxhaxis att = 10 ms. Here again,
the reader can observe that the schemes that do not satisfy their corresponding DG
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FIG. 2. Shock tube problent (= 10 ms).

and particularly those that employ second-order time-discretization, exhibit bounded os
lations around an otherwise good solution, which is in agreement with the main theoret
result presented in this paper.

6.3. Aeroelastic Response of an F-16 Fighter

In order to highlight the impact of the theorems presented in this paper on industrial C
applications, we simulate next the transient aeroelastic response to an initial disturbe
of an F-16 fighter in transonic airstreams. We consider the following free-stream flc
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conditions corresponding to a flight at an altitude of 10,000 ft:

M, = 0.9
Poo = 1.02 x 107° slugs/irt
Poo = 10.17 psi

We set the angles of attackdo= g = 0°. For this purpose, we construct a detailed finite
element structural model of this aircraft featuring bar, beam, solid, plate, shell, metallic
well as composite elements, and a total of 168,799 degrees of freedom (see Fig. 3a)
discretize the surface of the F-16 with 63,044 grid points (see Fig. 3b) and generate a
volume mesh with 403,919 grid points.

We excite the F-16 by an initial disturbance of its aeroelastic equilibrium at the flig
conditions specified above, and predict its subsequent transient aeroelastic response

)
ISR
l‘«é%‘&“ X
A AL
PSRN
o
RIS
0

(a) Finite element structural model

(b) Fluid surface grid

FIG. 3. Structural and fluid discretizations for the F-16 aeroelastic problem.
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the partitioned procedure described in [19] for solving the coupled fluid/structure/me
equations of motion. We equip this partitioned procedure with all of Scheme D, Scheme
and Scheme F for solving the flow subproblem, and with the second-order uncondition:
stable midpoint rule for time-integrating the structural motion. We assume that all moc
that participate in this aeroelastic response are below 100 Hz—which is justified by the 1
that the first and second natural modes of the F-16 are below 10 Hz—and therefore se
computational time step tat = 1 ms, which corresponds to sampling the frequency o
100 Hz in 10 points. This time step also turns out to be the maximum time step for whi
an acceptable accuracy can be obtained. We display in Fig. 4 some sample aeroel
solutions, and report in Fig. 5 the lift histories computed using Scheme D, Scheme E,
Scheme F as flow solvers.

During the first 0.2 physical second, the same lift variation in time can be observed
all cases. Afterward, Scheme E and Scheme F appear to amplify the lift history. Us

(a) Von Mises stresses (amplified aeroelastic deformations)

(b) Mach contours (amplified aeroelastic deformations)

FIG. 4. Sample solutions of the F-16 aeroelastic problem-at0.6 s.
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FIG. 5. Lift histories for the F-16 aeroelastic problem.

Scheme D, which satisfies its DGCL, the first 1.2 seconds of the aeroelastic respons
the F-16 are predicted in 36 hours CPU on a 16-processor Origin 2000 system. U:s
Scheme E, which violates its DGCL, the numerical simulation fails-at0.64 s because
of an instability in the flow solver. Using Scheme F, which also violates its DGCL, tf
simulation fails later at = 1.02 s, again because of a numerical instability in the flov
solver. These results are in agreement with the main theoretical result presented in
paper, and highlight the importance of the discrete geometric conservation law for real-
CFD applications on moving grids.

7. CONCLUSIONS

For each arbitrary Lagrangian Eulerian (ALE) or other numerical scheme designed
solving unsteady flow problems on moving grids, there exists a discrete geometric con
vation law (DGCL) that governs its geometric parameters. From a physical viewpoint, t
DGCL ensures that the given numerical scheme reproduces exactly a uniform flow. Fro
mathematical viewpoint, it is a necessary and sufficient condition for the given numeri
scheme to preserve the nonlinear stability in the sense of the discrete maximum princ
of its fixed grid counterpart. Hence, an ALE scheme which violates its DGCL is boul
to exhibit spurious oscillations and overshoots for practical computational time steps.
casionally, such a scheme can also exhibit an unbounded behavior. For these reason:
because the computational overhead associated with enforcing a DGCL is minimal, we
commend numerical methods that satisfy their DGCLs when considering a CFD applical
on moving grids.
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